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Boosting Real-Time Driving Scene Parsing
with Shared Semantics
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Abstract—Real-time scene parsing is a fundamental feature
for autonomous driving vehicles with multiple cameras. In this
letter we demonstrate that sharing semantics between cameras
with different perspectives and overlapping views can boost the
parsing performance when compared with traditional methods,
which individually process the frames from each camera. Our
framework is based on a deep neural network for semantic
segmentation but with two kinds of additional modules for
sharing and fusing semantics. On the one hand, a semantics
sharing module is designed to establish the pixel-wise mapping
between the input images. Features as well as semantics are
shared by the map to reduce duplicated workload, which leads
to more efficient computation. On the other hand, feature fusion
modules are designed to combine different modalities of semantic
features, which leverages the information from both inputs for
better accuracy. To evaluate the effectiveness of the proposed
framework, we have applied our network to a dual-camera vision
system for driving scene parsing. Experimental results show that
our network outperforms the baseline method on the parsing
accuracy with comparable computations.

Index Terms—Semantic scene understanding, visual learning,
sensor fusion, autonomous vehicle navigation.

I. INTRODUCTION

W ITH the development of autonomous driving in recent
years, scene parsing as a critical functionality of au-

tonomous vehicles, has attracted more and more attention [1].
Since scene parsing is a dense classification problem, it still
remains a difficult task to achieve an accurate performance
for real-time applications, especially for vehicles with multiple
cameras and limited computational resources.

Taking our autonomous vehicle platform shown in Fig. 1(a)
as an example, a dual-camera vision system is mounted on
the top of the vehicle, which is a common vision system
setup adopted by modern autonomous vehicles, e.g., Tesla
Autopilot [2]. Compared with typical stereo cameras, these
two cameras are with different field of views (FoVs), which
is designed for reliable and accurate perception of objects at
various distances. In the figure CAM-60 refers to the camera
with a 60◦ horizontal FoV (HFoV) and CAM-120 stands for
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Fig. 1. Illustration of our dual-camera system and motivation. Shared
semantics based on the pixel-wise mapping accelerates the processing of
CAM-60 and refines the results of CAM-120.

the camera with 120◦ HFoV. To get scene parsing results
from both cameras, traditional approaches usually process
images from each camera individually, which neglects the
correspondences within the dual-camera system.

Since the cameras with different perspectives have over-
lapping views as shown in Fig. 1(b), our goal is to find a
method to (1) build a pixel-wise mapping to share semantics
between two cameras and (2) leverage the compensation of
different perspectives to accelerate computation and get refined
scene parsing results. More specifically, because the scenes
captured by CAM-60 are completely contained in the image
from CAM-120, processing images from CAM-60 can benefit
from the information propagated from CAM-120, which leads
to a more efficient computation. At the same time, because
CAM-60 has a larger focal length, it has a clearer perception to
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the scenes far away from the vehicle. Thus CAM-120 can fuse
such information to enhance its original segmentation results.

In general, when compared with traditional approaches, our
method mainly boosts the scene parsing task for multi-camera
systems like our configuration in the following two aspects:

• Reduce the computation load for cameras with narrower
FoVs. The feature extraction procedure only needs to be
done once in the overlapping regions among different
cameras. For example, the heavy and slow feature ex-
traction backbone for CAM-60 can be replaced with a
lightweight one to extract complementary features. The
semantic information propagated from CAM-120 by a
semantic sharing module provides a coarse segmentation
for CAM-60, which can be further refined by fusing with
its own features.

• Improve the scene parsing quality for cameras with
broader FoVs. For example, the semantic features from
CAM-60 are also back-propagated to CAM-120 with the
same semantic sharing module. By appropriately fusing
with the original semantics of CAM-120, those seman-
tics located in the overlapping regions can be further
enhanced with the perspective advantage from CAM-60.

II. RELATED WORK

A. Real-Time Scene Parsing

Deep learning based scene parsing has been extensively
investigated in recent years, e.g., FCNs [3], SegNet [4].
Although the state-of-the-art semantic segmentation networks
can output high-quality results [5], [6], they are too heavy
and computationally expensive to be adopted in real-time
applications. Recently some lightweight semantic segmen-
tation networks have been designed to work on-line while
giving decent outputs [7]–[9]. However, these networks are
not naturally designed for those vision systems with multiple
cameras, which makes them still too memory or computation-
ally consuming for autonomous driving applications. In our
work, we aim to design an optimized architecture to reduce
the redundant computation which leads to a more efficient
framework.

B. Semantics Sharing

Semantics sharing seeks to find correspondences between
different images which have overlapping views, e.g., the image
pairs from stereo cameras or the consecutive frames in a video
sequence. Semantics sharing is commonly conducted in two
levels: pixel-level and feature-level.

1) Pixel-level Sharing: For pixel-level sharing, a pixel-wise
grid map is built to warp an image from one perspective to
the other. The map can be derived from the transformations
in geometry space or image space. The transformation in
geometry space generally uses the prior knowledge, e.g., the
planar assumption for perspective transformation [10], or the
depth estimation of the scene [11], [12]. The transformation
in image space usually considers the correlations around
neighborhoods of a pixel [13]. With recent development in
lightweight optical flow estimation networks [14], [15], it is

much more practical to exploit an optical estimation network
in real-time applications. Xu et al. [16] applied different
segmentation strategies to various regions of the input image,
which exploited optical flow to preserve the semantics in static
regions. Zhu et al. [17] investigated the generation of future
semantic segmentation labels from current manual labels by
video prediction based on motion vector estimation. Yin et al.
[10] combined a rigid structure reconstructer and a non-rigid
motion localizer to warp from one view to the other.

Compared with pure geometry-based methods, the image-
based methods are more robust to the errors of camera
calibration and time synchronization among different cameras.
Therefore, similar to [10], our framework also integrates both
geometry-based methods and image-based methods for sharing
semantic information between two cameras at the pixel-level.

2) Feature-level Sharing: Feature-level sharing propagates
information implicitly in the model, which is usually applied in
video sequence processing. Jin et al. [18] designed a network
to learn predictive features in video scene parsing. Li et al.
[19] proposed a framework with adaptive feature propagation
for high-level features to reduce the latency of video semantic
segmentation. Wang et al. [20] used an unsupervised method to
learn feature representations for identifying correspondences
across frames. Lee et al. [21] attempted to derive semantic
correspondences by object-aware losses. Compared with pixel-
level sharing, feature-level sharing is learned by an end-to-
end process, and it is thus difficult to directly evaluate its
performance. In addition, the feature-level sharing may rely
on the training data more heavily than the pixel-level sharing
used in our framework.

C. Semantics Fusion

The idea of semantics fusion for improving the segmentation
outputs has been widely applied in previous works. For exam-
ple, in [7] and [8], different modalities or levels of features
were fused with each other to generate refined results. Li et
al. [22] hypothesized a scaled region from the original image
by a perspective estimation network, which aimed to refine
original segmentation results of small objects. Jiao et al. [23]
proposed to improve and distill the semantic features with the
estimated depth embeddings by geometry-aware propagation.
All of the works above focus on the fusion for a single
image, while Hoyer et al. [24] demonstrated a spatial-temporal
fusion method for multiple camera sequences but with non-
overlapping views. In our work, we have followed the basic
idea of semantics fusion and applied it to cameras with
different perspectives and overlapping views to enhance the
overall scene parsing performance.

III. METHODOLOGY

In this section, we will describe the proposed method in
detail. First the overview of our framework will be demon-
strated. Then the ideas behind the design of each core module
will be discussed. The detailed implementation information
will be given at the end of the section.
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Fig. 2. The proposed scene parsing framework with shared semantics for our dual-camera vision system. The semantic segmentation network can be any
real-time encoder-decoder type segmentation models. The lightweight CNN extracts features fast for CAM-60. The semantics sharing module consists of
perspective transformation and optical flow estimation, which provides maps for warping between CAM-120 and CAM-60. Note that the dashed orange and
magenta arrows means the optical flow estimation can reuse the features from the semantic segmentation network and the lightweight CNN. Please refer to
Sec. III-D1 for more details. The feature fusion modules merge the shared semantics for final results.

A. Framework Overview

The proposed framework is illustrated in Fig. 2. The final
goal is to output the scene parsing results for each input image
from both CAM-120 and CAM-60.

From the view of structure, our framework can be divided
into two branches. Unlike traditional designs with exactly
the same pipeline for both branches, the input image from
CAM-60 passes a much more lightweight convolutional neural
network (CNN) compared with a complete semantic segmen-
tation network in the branch of CAM-120. The sharing and
fusion of information between two branches are realized with
a semantics sharing module and two feature fusion modules,
respectively.

From the view of functionalities, four kinds of modules in
our framework play different roles. The semantic segmentation
network provides high-level semantic features for sharing. The
lightweight CNN recovers the detailed and complementary
features for refined parsing results, similar to the architecture
of ICNet [8]. The semantic sharing module establishes a bridge
for bi-directional feature propagation from CAM-120 to CAM-
60 and vise versa. The feature fusion modules merge shared
semantics for each branch to achieve better parsing results.

Since the semantic segmentation network is a full-function
network which can output scene parsing results by itself, it
can be easily replaced with any modern network designed for
real-time scene parsing. For the lightweight CNN, it can also
be designed as a sequential of several convolutional layers
or sharing the structure with the feature extraction backbone
in the semantic segmentation network. The implementation
details of these two parts will be described in Sec. III-D. In
the following we will focus on the details of the semantic
sharing module and the feature fusion module.

B. Semantics Sharing Module

The task of the semantics sharing module is to remap
the semantic features between two branches. Through such
a bridge, the semantic features from branch CAM-120 can be
propagated to branch CAM-60 to speed-up its processing, and
then the results of CAM-60 are transfered back to refine the
outputs of CAM-120, which forms a cross-sharing structure.

Although the pure geometry-based method (e.g., the depth
estimation based warping) and feature-level propagation can
also be used for sharing semantics, as concluded in Sec. II-B,
the results of pixel-level sharing methods are more robust and
explicit, and thus we have proposed a two-stage image warping
method to build the semantics sharing module as shown in
Fig. 3.

1) Stage I: Geometry-based Warping: In the first stage,
the input image from CAM-120 is warped by the perspective
transformation. The homography matrix used in the trans-
formation can be derived from the intrinsic and extrinsic
parameters of the dual-camera system [25]:

H120→60 = K60RK−1
120, (1)

where H120→60 is the homography matrix for mapping from
CAM-120 to CAM-60, K60 and K120 are their camera matri-
ces. R is the rotation matrix from CAM-120 to CAM-60. Due
to the limitation of perspective transformation, those objects
close to the camera will be distorted after the transformation.
Thus the warped image from CAM-120 still needs to be
adjusted to accurately match the ground truth image from
CAM-60.

2) Stage II: Image-based Warping: In the second stage, the
warped image from CAM-120 is further warped by the optical
flow to compensate the distortion effects. The core process of
this stage is the precise estimation of optical flow between
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Fig. 3. The pipeline of semantics sharing. The first and second row show the warping progress for the raw and semantic image of CAM-120, respectively.
The third row demonstrates the propagated semantics from CAM-120 to CAM-60, where the white arrows point out the improvements after refinement.

S60

*1

*N
NxN 
Convolution

Element-Wise
Addition

F60

Concat.

F60

Batch 
Normalization

ReLU

(a) Basic type

F60

Concat.

*3 *3

*1

S60F60

(b) Residual type

F60

*3 *1

S60F60

*1

*1

(c) Bottleneck type

Fig. 4. Three optional types of feature fusion modules in our framework.

the input image pairs. It should be noticed that because the
pose variation between two cameras is very small and the
input image pairs are correctly synchronized, the scene can
be considered as static and the occlusion effect is negligible.
Therefore the movement of pixels is not that large and the
artifacts of the warped image also can be ignored in contrast
to the situation of video scene parsing.

C. Feature Fusion Module

The feature fusion modules are used to generate the seg-
mentation results of CAM-60 as well as to refine the results
of CAM-120. As shown in Fig. 4, we have implemented and
evaluated three different types of the feature fusion modules to
compare with the direct output of the semantic segmentation

network. In Sec. IV-D4 we will show the ablation analysis of
these blocks which depicts that even integrating the simple
basic block can boost the parsing outputs to some extent.

In the following we will take the feature fusion module in
the CAM-60 branch as an example to describe their structures.

1) Basic Type: The basic type of feature fusion module
only concatenates the input feature maps and output the
semantic feature maps after an 1× 1 conv.

2) Residual Type: Since the effectiveness of residual block
has been widely proved in previous works, we also apply it
to our framework. The inputs are first concatenated and then
passed through a standard residual block with 3 × 3 conv
layers. Finally the output is processed by an 1 × 1 conv for
classification.

3) Bottleneck Type: Aiming to decrease the computation
and the amount of parameters in our framework, we also
evaluate a bottleneck type of feature fusion module. The inputs
are first converted to the same channels with an 1 × 1 conv,
then they are passed through a bottleneck with an expansion,
followed by an rectified linear unit (ReLU) for the output.

D. Implementation Details
1) Structure: Taking the implementation of the semantics

sharing module into account, we have developed two types of
structures for our framework: a) loosely-coupled structure and
b) tightly-coupled structure. For the loosely-coupled structure,
we simply exploit a complete optical flow network following
the perspective transformation, which can achieve the best
estimation performance.

However, because the optical flow network also has its
own feature extraction modules, it is possibly duplicable to
those in the semantic segmentation network. Therefore, in
the tightly-coupled structure shown in Fig. 5, we remove the
feature extraction part of the optical flow network and reused
the feature maps from the semantic segmentation network.
With such adjustments made, the whole model becomes more
compact and the computation load can be further cut down.
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2) Semantic Segmentation Network: We exploit a real-time
semantic segmentation network based on MobileNetV3-large
[9] to get the initial semantic features of CAM-120. To train
the semantic segmentation network, we apply the common
cross entropy loss to supervise the training progress.

3) Lightweight CNN: The implementation of the
lightweight CNN is based on the structure of the framework.
For the loosely-coupled structure, we share the structure
with the semantic segmentation network and output a feature
pyramid with 1/8 size of the original resolution for later
fusion with the results from CAM-120. For the tightly-coupled
structure, we reuse the feature extraction part of the optical
flow network and adjust it to output a feature pyramid with
exactly the same size from 1/4, 1/8 to 1/16 as those from the
semantic segmentation network.

The lightweight CNN also shares the weights with the se-
mantic segmentation network in the loosely-coupled structure.
In the tightly-coupled structure, it is trained together with the
optical flow network.

4) Semantics Sharing Module: The main part of the seman-
tics sharing module is an optical flow estimation network. We
use a PWC-Net [15] to provide grid maps for warping feature
maps. It should be noticed that the original feature pyramid
given by PWC-Net is not the same as the MobileNetV3-large.
Thus for the tightly-coupled structure, we need to modify
the channels of the output feature maps to match those in
MobileNetV3-large accordingly.

The training losses of the optical flow network in our
cases consist of three different types: a) supervised loss, b)
unsupervised loss and c) semantic loss. The supervised loss
is applied when the ground-truth flow is available with some
synthetic datasets. It is defined as the average end-point error
(AEPE):

Lsup =
1

N

N∑
i

∥w(pi)− ŵ(pi)∥2 , (2)

where p is the pixel index and N is the total number of pixels
in the flow image. w and ŵ are the ground-truth and the
estimated flow, respectively.

The unsupervised loss is mainly for training on those
datasets without the ground-truth flow. We choose three most
commonly used losses for unsupervised learning:

Lunsup = w1L1 + w2LSSIM + w3Lsmooth. (3)

100m

Driving Route

Fig. 6. Driving route for the video data collection of the dataset.

TABLE I
STATISTICS OF OUR DATASET

Length
(km)

Duration
(h)

Max. Speed
(km/h)

Image
Pairs

Image
Size

Semantics
Classes

∼10 1.28 30 4593 1920×1208 6

Here the first term is defined as the L1 norm of the pixel
intensity difference between the ground-truth image I and the
flow-warped image Î:

L1 =
1

N

N∑
i

∥∥∥I(pi)− Î(pi)
∥∥∥
1
. (4)

The second term is the SSIM [26] loss of the ground-truth
image and the flow-warped image. The third term is the
smoothness loss [27] of the estimated flow. The weights of
these three losses w1, w2 and w3 are set to 0.1, 1.0 and 1.0,
respectively.

The semantic loss is for the dataset with semantic labels. It
can be regarded as a supervision for flow at the boundaries of
each semantic class. Here we also applied the cross entropy
loss to supervise the fine-tuning of the optical flow network.

5) Feature Fusion Module: For the basic and residual type
of feature fusion modules, they are applied to both branches
without modification. However, since the bottleneck type has
an element-wise addition unit, we will additionally need an
1 × 1 conv to reshape F60 to the same size as F̂60 in the
CAM-60 branch, as shown in Fig. 4(c).

IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

Since we have not found any public dataset with configura-
tions as our applications, we built our own dataset with a dual-
camera system on an autonomous vehicle. The videos were
captured by a Sekonix SF3324 (CAM-120) and a Sekonix
SF3325 (CAM-60) with an NVIDIA DRIVE AGX platform.
The video sequences were collected inside the SAIC Motor
Park and the driving route is shown in Fig. 6.

The statistics of the dataset is listed in Table I. The videos
from each camera are synchronized by the hardware. We
automatically extract images from the videos at the rate of
one frame per second. Then we select about 1000 image pairs
to manually label six classes of semantics: background (BG),
road, person, car, barrier and cycle. We use these images to
train a PSPNet [5] to automatically label the other images as
the ground truth for later training the semantic segmentation
network based on MobileNetV3-large for real-time parsing.
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In addition to the semantic labels, we also need ground-truth
optical flow to train the PWC-Net, which is difficult to obtain.
So we turned to synthesize a warped image by a random
perspective transformation from an input image. Specifically,
the focal length of CAM-120 in its camera matrix is multiplied
by a random factor between 0.95 and 1.05; then the image
is further randomly translated by ±10 pixels and rotated by
±5◦. The flows generated along with the transforming process
is used as the ground truth. In Sec. IV-D2 we will show that
after training on this dataset, the performance of PWC-Net on
the original dataset will be improved.

The performance of our network is evaluated with the
mean intersection over union (mIoU) metric for semantic
segmentation and average end-point error (AEPE) for optical
flow estimation.

B. Training Procedure
We follow a multi-stage training procedure to train each

component of our framework:
• Semantic segmentation network: We trained the

MobileNetV3-large with a segmentation head for 160K
iterations using a mini-batch size of 16. The initial
learning rate was set to 0.015 and followed a ‘poly’
policy with power 0.9.

• Optical flow estimation network: For the loosely-coupled
structure, the PWC-Net was trained separately to the
segmentation network. It was first trained on the Fly-
ingChairs dataset with the same settings as [15]. Then we
further trained it on our synthetic flow dataset for 300K
iterations using a mini-batch size of 8. The initial learning
rate was 0.0005 and was scaled by 0.5 at 100K, 200K,
250K. Finally the model was fine-tuned on the real data
with unsupervised losses and semantic loss sequentially.
For the tightly-coupled structure, only one of the feature
extraction parts and the optical flow estimation part were
needed to be trained. The training settings remained the
same as the loosely-coupled structure.

• Feature fusion modules: The feature fusion modules were
trained with the whole network with the fixed weights
of MobileNetV3-large and PWC-Net. The feature fusion
module in CAM-60 branch was first trained for 60K
iterations with a mini-batch size of 4. The initial learning
rate was set to 0.001. The other training settings were the
same as MobileNetV3-large. The feature fusion module
in CAM-120 was also trained in the same way.

• Fine-tuning: The whole network was finally fine-tuned
together for 120K iterations with the same settings as
training MobileNetV3-large. In order to keep a steady
performance of optical flow estimation, the weights of
PWC-Net were fixed in the final fine-tuning.

We use PyTorch to implement our network. The network
is trained and tested on two NVIDIA Tesla V100 GPUs. Our
code and trained models have been made publicly available
at: https://github.com/zhenzhenxiang/SemanticsSharing.

C. Main Results
We have chosen the MobileNetV3-large based segmentation

network [9] as our baseline, which is also used in the CAM-

120 branch of our framework. As shown in Table II, we
have compared the semantic segmentation performance, model
statistics and runtime of the baseline and our network with
loosely-coupled and tightly-coupled structures.

1) Semantic Segmentation: For the CAM-60 branch, the
segmentation results show that our loosely-coupled structure
has slightly outperformed than the baseline in general, al-
though there is only a lightweight CNN in this branch. Besides,
the performance of our tightly-coupled structure is also very
close to the baseline with more reused intermediate features.

For the CAM-120 branch, both of our loosely-coupled
and tightly-coupled structure have an obvious improvement
compared to the baseline, especially for the loosely-coupled
with the class of Person (+2.3%), Barrier (+1.7%) and Cycle
(+5.9%). In addition, the mIoU results in the central view
of CAM-120 which overlaps with CAM-60 (c.f. “120-OL”)
are also provided for further comparisons. The results show
significant improvements on Person (+3.7%), Barrier (+4.6%)
and Cycle (+5.6%). This reflects the effectiveness of our
semantics sharing module and feature fusion module which
propagate and fuse the semantic information from CAM-60
to CAM-120. The sharing of such information compensates
and improves the features of those small objects in the view
of CAM-120. As shown in Fig. 7, our network successfully
recovers the missing small objects that are far from the vehicle
(c.f. the first and second group of image pairs), and has a more
accurate classification at the boundary of small objects (c.f. the
third group of image pairs).

2) Model: Our loosely-coupled model has 2.3× more pa-
rameters than the baseline, which can be reduced to 1.6×
with tightly-coupled structure. The computation is evalu-
ated by inputting images with 1920×1208 resolution for the
MobileNetV3-large and 768×483 for PWC-Net. The results
show that our loosely-coupled model has comparable compu-
tation with the baseline, while the tightly-coupled model needs
even less computation resources.

3) Runtime: The results are the average runtime of 300
inferences for each model. As shown in Table II, the baseline
and our models are all capable for real-time applications,
especially when the size of input image is a half of its orig-
inal resolution, i.e., 960×604. When deployed to embedded
devices, the models can be further optimized which will lead
to a much higher frame rate.

D. Ablation Study
1) Loosely-Coupled vs. Tightly-Coupled: The influence of

loosely-coupled and tightly-coupled structure for optical flow
estimation was evaluated. The results on Data Sim (the hy-
pothesized image pairs) and Data Real (the real image pairs)
are listed in Table III. We can find that the tightly-coupled
structure has larger AEPE and unsupervised loss in both
datasets. This is mainly because that we have fixed the weights
of reused feature extraction part from MobileNetV3-large and
trained the rest parts of PWC-Net. From the comparisons of
semantic segmentation in Table II for both structures, we can
find that such inaccuracy of flow estimation will only have a
slight effect on the segmentation results after fine-tuning the
whole network.
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Fig. 7. Visualization of scene parsing results for the baseline and our framework. In the third and fourth column for CAM-120, the main difference between
our results and the baseline are pointed out with white arrows.

TABLE II
COMPARISONS AMONG THE BASELINE AND OUR METHOD WITH LOOSELY-COUPLED AND TIGHTLY-COUPLED STRUCTURES.

Network CAM
Mean IoU of Semantic Segmentation (%) Model Runtime (fps)

BG Road Person Car Barrier Cycle Avg. Total Params FLOPS Full Res. Half Res.

Baseline
60 99.4 99.1 78.6 95.6 73.4 70.4 86.1

85.9
2.81M 34.34G 29.8 103.2120 99.5 98.6 74.1 95.2 78.0 68.8 85.7

120-OL 99.3 98.8 72.6 94.3 72.5 70.1 84.6 -

Loosely-
coupled

60 99.5 99.2 76.8 95.5 75.4 71.3 86.3
87.0

6.57M 39.28G 19.6 47.7120 99.6 98.8 76.4 95.7 80.3 74.7 87.6
120-OL 99.4 99.0 76.3 95.2 77.1 75.7 87.1 -

Tightly-
coupled

60 99.4 98.8 75.8 94.6 74.6 69.8 85.5
86.3

4.50M 33.76G 31.0 78.1120 99.6 98.7 75.2 95.6 80.1 72.6 87.0
120-OL 99.4 99.0 76.1 95.1 76.6 74.7 86.8 -

2) Optical Flow Estimation with different training sched-
ules: Since the performance of optical flow estimation can be
influenced by the training schedules on different datasets [15],
we also evaluated the effectiveness of the synthetic Data Sim
dataset. Table IV shows the comparisons of three different
types of training schedules. It suggests that the training on
Data Sim has positive effects on the original network trained
with the FlyingChairs [13] dataset and improves its perfor-
mance on the final Data Real dataset.

3) Semantic Sharing w/ or w/o Warping by Optical Flow:
The performance of the optical flow estimation network di-
rectly affects the shared semantics. In Table V we compare
the semantic segmentation results of CAM-60 branch with
or without the optical flow warping in the semantics sharing

module. Note that we have skipped the feature fusion mod-
ules in the evaluation for simplicity. The results depict that
with only warping by perspective transformation (P.T.), the
segmentation results are relatively poor especially for those
classes of small objects, which means the semantics are badly
propagated. After applying the warping with the optical flow,
the performance has a significant enhancement (11.0%), which
suggests the importance of accurate remapping.

4) Semantic Feature Fusion with Different Types of Blocks:
Table VI illustrates the comparisons of integrating different
types of feature fusion blocks in CAM-60 branch as an
example. We can find that even the simplest basic block can
dramatically boost the final segmentation performance. The
bottleneck type achieves similar outputs to the residual type
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TABLE III
COMPARISONS OF OPTICAL ESTIMATION RESULTS ON DIFFERENT

DATASETS WITH DIFFERENT NETWORK STRUCTURES.

Network Structure
AEPE

Unsupervised Loss
L1 SSIM Smooth

Data Sim Data Real

Loosely-coupled 1.86 15.4 0.376 0.018
Tightly-coupled 3.67 17.5 0.422 0.024

TABLE IV
COMPARISONS OF OPTICAL ESTIMATION RESULTS ON DIFFERENT

DATASETS WITH DIFFERENT TRAINING SCHEDULES.

Training Schedule
AEPE

Unsupervised Loss
L1 SSIM Smooth

Data Sim Data Real

Chairs 1.07 22.8 0.429 0.192

Chairs-Simulate 0.08 18.7 0.421 0.030

Chairs-Simulate-Real 1.86 15.4 0.376 0.018

TABLE V
COMPARISONS OF SEMANTIC SEGMENTATION RESULTS ON DATA REAL

W/ OR W/O WARPING BY OPTICAL FLOW.

Warping
Mean IoU of Semantic Segmentation for CAM-60 (%)

BG Road Person Car Barrier Cycle Avg.

P.T. 98.0 96.5 33.9 84.6 35.7 50.0 66.4

P.T. + Flow 98.9 98.5 61.6 92.4 53.0 59.9 77.4

TABLE VI
COMPARISONS OF SEMANTIC SEGMENTATION RESULTS ON DATA REAL

DATASET WITH DIFFERENT FEATURE FUSION MODULES.

Feature
Fusion
Module

Mean IoU of Semantic Segmentation for CAM-60 (%)

BG Road Person Car Barrier Cycle Avg.

None 98.9 98.5 61.6 92.4 53.0 59.9 77.4

Basic 99.1 98.8 69.2 93.6 58.1 62.5 80.2

Residual 99.3 99.0 71.1 94.2 64.4 63.1 81.8

Bottleneck 99.2 99.0 71.7 94.1 62.0 65.5 81.9

in most classes as well as the total average, although it has
much less parameters and needs lower computation.

V. CONCLUSIONS

In this letter we demonstrate how to boost the performance
of a scene parsing task for real-time autonomous driving
applications with shared semantics. A semantics sharing and
fusion framework was proposed to propagate semantic features
between two cameras with different perspectives and overlap-
ping views. The shared semantics can not only reduce the
duplicable computation in feature extraction procedures, but
also refine the segmentation results of both cameras. In the
future work we will further investigate to sharing semantics
in video scene parsing to realize a more compact and faster
semantic perception system.
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