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Abstract— Vision-based localization and mapping solution is
promising to be adopted in the automated valet parking task.
In this paper, a semantic SLAM framework that leverages
the hybrid edge information on bird’s-eye view images is
presented. To extract useful edges from the synthesized bird’s-
eye view image and the free-space contours for the SLAM
task, different segmentation methods are designed to remove
the noisy glare edges and distorted object edges caused by
the inverse perspective mapping in view synthesis. Since only
the free-space segmentation model needs training, our methods
can dramatically reduce the labeling burden compared with
previous road marking based methods. Those incorrect and
incomplete edges are further cleaned and recovered by a
temporal fusion of consecutive edges in a local map, respectively.
Both a semantic edge point cloud map and an occupancy grid
map can be built simultaneously in real time. Experiments in
a parking garage demonstrate that the proposed framework
can achieve higher accuracy and perform more robustly than
previous point feature based methods.

I. INTRODUCTION

Automated valet parking (AVP) is one of the most promis-
ing applications in autonomous driving. For a standard AVP
task, the simultaneous localization and mapping (SLAM)
system is essential for an intelligent vehicle to autonomously
navigate in a parking lot or garage [1]. In recent years,
as vehicles are equipped with more and more cameras,
the vision-based SLAM systems have attracted extensive
attention [2].

Different from traditional visual SLAM frameworks that
directly process multiple raw images, in this paper, we
mainly focus on the bird’s-eye view image synthesized
from four surrounding fisheye images by inverse perspective
mapping (IPM). The main advantage of taking the bird’s-
eye view image as input is to dramatically decrease the
computation load, which is very important in real-time
applications.

As shown in Fig. 1, the bird’s-eye view image can preserve
most of the information on the ground surface around the
vehicle with a 360◦ field of view. Since there are usually
complex lighting conditions (e.g., glares reflected by the
ground) and plenty of dynamic objects (e.g., moving cars
and pedestrians) in parking scenarios, it is a very challenging
task to perform the SLAM task. To handle these difficult
situations, with the development of deep learning, recent
work attempts to train a deep neural network in order to
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Fig. 1. An overview of our solution for automated valet parking, including
(a) a sample image captured by the fisheye cameras on our autonomous
vehicle, (b) the bird’s-eye view image generated by view synthesis with free-
space segmentation result, (c) the extracted edges for semantic visual SLAM
system, and (d) the built edge point cloud map as well as the trajectory.

extract semantic information for more accurate and robust
localization and mapping. Although a significant progress
has been made with such methods, a huge amount of labeled
images are needed for training the models, especially when
the system is adapted to new unseen environments.

In this paper, we proposed a hybrid semantic information
extraction method which combines a classical unsupervised
edge detector and a group of IPM-based edge segmentation
methods. As shown in Fig. 1(b), our framework only requires
the coarse segmentation of free space instead of the fine
segmentation of road markings, which can greatly reduce
the burden on data annotation. With our edge segmentation
methods, most of the noisy and distorted edges, e.g., the edge
of glares and the contour of objects over the ground, can be
filtered by leveraging the prior knowledge of IPM (Fig. 1(c)).
Therefore, both the bird’s-eye edges inside the free space
and the contours of free space can be combined as hybrid
edges and input to the SLAM system for localization and
mapping. We can find that the generated edge point cloud
map in Fig. 1(d) clearly reflects the road markings on the
ground surface.

II. RELATED WORK

A. Visual SLAM for Multi-Camera Systems

Increasing the number of cameras in visual SLAM system
can significantly enhance the accuracy and robustness of
the system. Therefore, more and more state-of-the-art visual
SLAM frameworks such as SVO [3], VINS-Fusion [4] and
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Fig. 2. The proposed bird’s-eye edge based semantic visual SLAM framework. The bird’s-eye view image is generated from four fisheye images by view
synthesis. The free space is segmented to provide a mask for edge detection. The bird’s-eye edge extraction module processes the raw edges detected from
both the bird’s-eye view image and free-space image, followed by an IPM-based edge segmentation procedure to remove noisy and distorted edges. The
local map is generated by fusing consecutive edge images, which is used for relative pose estimation and global mapping. Both the edge point cloud map
and occupancy grid map are simultaneously built and optimized.

OpenVINS [5] have supported multi-camera configurations.
Different camera models [6] and various camera setups [7],
[8] have been extensively investigated. Recently, Kuo et
al. redesigned the visual SLAM framework for arbitrary
multi-camera systems which could adapt to various camera
configurations [9].

Although directly processing the raw images from multiple
cameras can maximize the use of original information, it also
requires a powerful computation platform and may not be
suitable for real-time applications. As an alternative, recent
work also investigates using the synthesized bird’s-eye view
or surrounding view images, which can efficiently perform
the SLAM task with decent accuracy [10], [11], including
our previous work [12].

B. Semantic Visual SLAM in Autonomous Driving

Semantics-aided visual SLAM has been extensively inves-
tigated for several years in the field of autonomous driving,
especially with the rapid development of deep learning. Gen-
eral semantic visual SLAM mainly focuses on the semantics
extraction [13] and data association [14], [15]. Semantic
segmentation and object detection models are widely used
for extracting point-level [16]–[18] and object-level [19]–
[21] semantics, which have brought additional semantic and
geometric constraints to SLAM formulations for more stable
and accurate performance. However, since the deep learning
based models usually need plenty manually labeled data
for training, it may take a long time before these methods
are transferred to new scenarios. Therefore, we consider to
design a hybrid edge extraction method only requiring coarse
free-space segmentation results, which can be about 10×
faster than previous methods for labeling a frame.

C. Automated Valet Parking Applications

Vision-based solutions for AVP applications are the trend
of recent investigations as the cameras are much cheaper than
LiDAR sensors and can capture rich semantic information.
The V-Charge project which aimed to provide AVP services
with close-to-market sensors has made a significant progress
on building a vision-based navigation system for AVP tasks
[22]–[24]. Both the metric and semantic information were
adopted in [23] to build a parking space map for navigation,
which has been followed by [25] with a tightly-coupled

multi-sensor fusion based framework. With pixel-level seg-
mentation results of the environment, the authors of [26]
and [27] similarly took the road markings as the input and
built a complete visual SLAM system for AVP tasks. In our
previous work [12], we have demonstrated the effectiveness
of incorporating the free-space contour to a feature-based
visual odometry system. To further leverage the semantics
in bird’s-eye view images, we attempt to extract the edges
on the ground surface which is much denser and more stable
for visual SLAM systems.

III. FRAMEWORK

In general, our framework is a hybrid edge based semantic
visual SLAM system using bird’s-eye view images as input.
It mainly consists of three parts as shown in Fig. 2:

• Bird’s-eye edge extraction: The synthesized bird’s-eye
view image as well as the segmented free-space image
are taken as the input of our system. Raw hybrid edges
including those inside the free space and the contour
of free space are detected, followed by an IPM-based
segmentation module which is able to remove most of
noisy edges caused by the glares on the ground as well
as distorted object edges above the ground.

• Mapping: With the extracted hybrid edges, the mapping
module accumulates and generates a probabilistic local
edge map for relative pose estimation. A global edge
point cloud map as well as an occupancy grid map can
be derived with the recorded trajectory and pose graph
optimization.

• Odometry: The current pose in local map is estimated
by semantic point cloud registration, given the initial
transformation from wheel odometry. The pose of each
frame is further accumulated to generate the vehicle’s
trajectory in global map.

In the following two sections, details of our framework
will be illustrated.

IV. BIRD’S-EYE EDGE EXTRACTION

As we can find from sample bird’s-eye view image in
Fig. 3(a), there are plenty of road markings on the ground
surface, which are good landmarks for a SLAM system.
However, the image is also polluted by the glares from the
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Fig. 3. The detected raw edges on a bird’s-eye view image and the masked
edges considering the view synthesis and free-space segmentation. Note that
different types of edges as pointed out.

lights reflected by the ground. In addition, the contours of
those objects over the ground are dramatically distorted in
IPM for view synthesis. Thus, the role of our bird’s-eye edge
extraction module is to detect and preserve high quality edges
from the input bird’s-eye view and free-space images, which
is fundamental for the whole SLAM system.

Two submodules are concatenated in the edge extraction
procedure. Firstly, raw edges are detected from the input
images. Then these edges are segmented to remove noisy
and distorted parts by considering the distortion effect of
IPM in view synthesis.

A. Raw Edge Detection

The raw edges on the input images can be detected by
either traditional edge detection algorithms (like Canny edge
detector [28]). As shown in Fig. 3(a), on the one hand,
the edges of road markings as well as object footprints are
successfully detected on the whole; on the other hand, such
detectors normally are unable to distinguish the useful edges
for SLAM task from those useless and noisy edges of the
surrounding vehicles, pillars, or glares.

With the help of free-space segmentation, the edges inside
the objects over the ground can be removed. However,
the remaining parts still contains a significant amount of
disturbing edges from the glares and objects distorted by
the IPM as depicted in Fig. 3(b).

Therefore, the masked edges need further processing be-
fore sending to the mapping and odometry modules. Oth-
erwise, the performance of following procedures will be
dramatically decreased.

B. IPM-based Edge Segmentation

The basic idea of cleaning the edges is to leverage the
characteristic of distortion effect in IPM. As we can find
in Fig. 3, the edges of glares and objects are stretched in
the view synthesis. Most of these edges are consistently
radial, which approximately pass the focal point of each
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(a) Ray-based segmentation (left) and its output edges for bird’s-eye
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Fig. 4. Illustrations of different edge segmentation methods and their
results. The red edges are segmented as those distorted by IPM and will
be removed. The green edges are preserved for the mapping and odometry
modules.

camera. Such phenomenon motivates us to design various
segmentation methods which are depicted in Fig. 4.

Ray-based segmentation. A naı̈ve and straightforward
thought is to consider the detected edges as the results of a
2D LiDAR sensor like our previous work [12]. As shown in
Fig. 4(a), the view of a camera sensor is divided evenly with
a specific angle step. For each angle bin, the edge points that
fall in the same bin are accumulated. Then the edge points
in those bins with larger number of points than a predefined
threshold are removed.

Although the ray-based segmentation method is simple,
fast and able to remove a certain part of the distorted edges,
its drawbacks are also obvious. Firstly, the dividing lines of
angle bins are predefined and can separate a long distorted
edge into two parts. This is because the distorted edges are
usually not that straight. Secondly, the structure of edges is
not considered and is broken in the accumulation, which will
make those small and dense edges be incorrectly removed.
Finally, tuning the parameters of ray-based segmentation can
also be difficult as the angle step and threshold are coupled.

Line-based segmentation. To consider the geometric dis-
tribution of edges, we further attempt to detect line segments
on the edge image. Specifically, as shown in Fig. 4(b), line
segments are detected by a line segment detector (e.g., a
Hough transform based detector [29]). Then the distance
between the focal point of camera and each line segment
is computed and compared to a distance threshold. Those
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Fig. 5. The pipeline of local map generation for pose estimation, including
(a) the accumulated probabilistic local map, (b) the thresholded local map
and (c) the extracted edges (bird’s-eye edges in green and free-space edges
in red) registered to the local map.

line segments that are sufficiently close to the focal point
will be marked as distorted edges.

The main advantage of line-based segmentation is reduc-
ing the possibility of falsely removing dense edges along a
specific radial direction. Also, the parameters of detection
and segmentation threshold are clearly divided. However,
since the line segment detection is generally performed at
the level of edge image, the points from unconnected edges
can be wrongly considered as the same part. In addition, it
can be difficult for those edges far away from the camera
to fulfill the condition for removing if they are not straight
enough.

Polyline-based segmentation. To further consider the fine
edge structures, we firstly distinguish different edge instances
before the segmentation. Then for each edge instance, the
Douglas-Peucker algorithm [30] is applied to simplify the
edge and generate a polyline to represent it. As shown in
Fig. 4(c), the focal point is connected to the center of each
line segment in each polyline. The angle distance between
the line segment and the connected line is evaluated with
an angle threshold. We can find that those line segments on
distorted edges are commonly with smaller angles.

The major superiority of polyline-based method is that it
simplifies the line estimation and restricts it to the level of
edge instance. Also, it is less sensible to evaluate the angle
between two line direction vectors than the distance from the
focal point to the line segment, especially for those edges far
from the vehicle.

It should be noticed that, there still exist some small edges
from the glares that are not completely removed by the
polyline-based method. In the meanwhile, some useful road
marking edges can be wrongly removed when they are just at
the same radial direction of a camera. For these segmentation
errors, we will further deal with them in the local mapping by
leveraging the temporal fusion of consecutive observations.

V. SEMANTIC ODOMETRY AND MAPPING

After the segmentation of bird’s-eye edges, we can convert
them to point clouds in Euclidean space with the calibrated
scale factor. With such hybrid point clouds which have two
classes of edges (i.e., bird’s-eye edge and free-space edge),
a semantic SLAM system can be established.

A. Local Map Generation

As previously discussed in Sec. IV-B, the segmentation
module is unable to completely remove the noisy edges,

for example, some parts of the glare edges, due to the
limitation of its mechanism. Meanwhile, some road markings
or parking spot edges can be incorrectly removed when they
temporarily locate on the ray direction from the focal point
of a camera. Thus, the extracted edges on current image
are commonly incomplete and unstable, which will make it
difficult to acquire robust relative pose estimation with a key
frame based strategy.

To overcome the limitation of single frame based esti-
mation, we alternatively accumulate the extracted edges in
consecutive frames and build a local edge map for more
stable motion estimation. The local map can be easily ini-
tialized with the edges on the first frame. Then by iteratively
estimating the poses of following frames, new edges are
transformed and added to the local map frame by frame.
A sample of derived local map is shown in Fig. 5, where the
fusion of different frames is probabilistic. To update the local
map smoothly and fill small gaps, the edges are processed
by a Gaussian filter before adding them to the map.

In order to remove the incorrectly segmented edges which
have been added to the local map, a sliding window fusion
is also applied. The frame buffer length for the local map is
restricted to a fixed number. When it is full, the oldest edges
will be subtracted from the local map. It should be noticed
that, those edge points with sufficient high probabilities will
not be modified in the subtraction, which can keep those
significant edges in the local map as much as possible.

When the vehicle’s translation or rotation exceed prede-
fined thresholds, the local map will be transformed to current
pose and those edges outside the range of local map will not
be maintained and updated.

B. Pose Estimation

The fused local edge map is thresholded and converted
to point cloud in world coordinates. To estimate the current
vehicle’s pose in local map, the edge points in current frame
are first projected to the local map by the transformation from
wheel odometry. Then the data association is established by
the nearest neighbor searching. Finally, the current pose in
local map Tlocal

vehicle can be estimated by solving the following
problem:

min
Tlocal

vehicle

∑
i

∥∥plocal
i −Tlocal

vehiclep
vehicle
i

∥∥
2︸ ︷︷ ︸

bird’s-eye edge point distances

+

w
∑
j

∥∥plocal
j −Tlocal

vehiclep
vehicle
j

∥∥
2︸ ︷︷ ︸

free-space edge point distances

,
(1)

where plocal
i and pvehicle

i are the i-th point correspondence
for bird’s-eye edge clouds between current frame and local
map, while plocal

j and pvehicle
j represent the j-th free-space

edge point correspondence. w is the weight factor to balance
the costs between the above two different classes of edges.



Bird’s-Eye View 
Image

Masked Edges 
with Ground Truth

Ray-based 
Segmentation

Line-based 
Segmentation

Polyline-based 
Segmentation

Fig. 6. The extracted bird’s-eye edges by different segmentation methods. The manually labeled ground-truth edges for evaluation are drawn in green
on the masked edges. For each column of segmented edges, the colors represent whether the edges are correctly preserved (green) or not (red), while the
white edges are those missed by the proposed methods. In addition, The color intensity means whether the edges are inside the free space (brighter) or on
the contour of free space (darker).

C. Global Mapping

The global map can be derived from the the local map
and the global trajectory of the vehicle. Since the extracted
free-space edges can also be considered as 2D LiDAR
measurements, not only a semantic point cloud map but also
an occupancy grid map can be simultaneously built, as shown
in Fig. 2. When a loop closure is detected between local
maps, which is similar to the pose estimation problem, a
normal pose graph optimization is performed to correct the
drift.

VI. EXPERIMENTS

A. Data Collection

The data sequence used to evaluate our framework was
collected in an underground garage. Detailed information of
the sequence is listed in Table I. The size of synthesized
bird’s-eye view image is 384 × 384, which covers a region
of 15.3 m × 15.3 m around the vehicle. A modified ICNet
model [31] was applied to get the free-space segmentation
results. The ground truth trajectory was computed with the
fusion of wheel odometry and high-precision IMU measure-
ments since GPS information was not available underground.

TABLE I
DATA SEQUENCE INFORMATION

Scenario Length
[m]

Duration
[s]

Mean Speed
[m/s]

Max. Speed
[m/s]

Bird’s-Eye
Images

Underground
Garage 128.38 201 0.64 0.96 1336

B. Bird’s-Eye Edge Extraction

We first evaluate the performance of different segmenta-
tion methods for extracting hybrid bird’s-eye edges. Both
qualitative and quantitative results are shown to demonstrate
their capabilities of filtering noisy and distorted edges.

1) Qualitative results: Several sample images and their
corresponding edge extraction results are listed in Fig. 6.
For each sample, we manually labeled on the edge images
masked by the view range and free space (see Fig. 3(b)) to
derive the ground truth. Then the final edges output by each
method were compared with the ground truth and visualized
in different colors.

From the figure we can find that, for the ray-based seg-
mentation, too many edges of glares are wrongly preserved.
This situation may happen when those edges are just divided
into two bins or they are not that long enough compared
with the threshold. For the line-based segmentation, most
parts of the glares’ edges are successfully removed. However,
those useless edges that are far away and not that straight
(especially the contour of free space) may fail to satisfy the
range threshold to the focal point, thus, they will not be
filtered. Finally, the polyline-based segmentation method can
successfully remove most of the noisy and distorted edges
at the expense of missing a small part of useful edges.

2) Quantitative results: To quantitatively analyze the per-
formance of each method, we manually labeled 30 edge
images to compute the metrics of Precision and Recall for
each method. For a fair evaluation, we tuned the thresholds
of each method to make them at the same level of Recall



TABLE II
PRECISION AND RECALL FOR EACH EDGE SEGMENTATION METHOD

Method Precision Recall
Ray-based Edge Segmentation 0.631 0.729
Line-based Edge Segmentation 0.751 0.730

Polyline-based Edge Segmentation 0.863 0.732
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Fig. 7. The estimated trajectories with different bird’s-eye edge segmen-
tation methods.

TABLE III
ABSOLUTE TRAJECTORY ERROR OF PROPOSED FRAMEWORK WITH

DIFFERENT EDGE SEGMENTATION METHODS

Edge Segmentation RMSE [m] Mean [m] Max [m]
Ray-based 6.493 5.975 10.772
Line-based 4.148 3.797 6.137

Polyline-based 1.993 1.845 3.169

rate. The threshold for the number of edge points in ray-
based segmentation was set to 110 with the ray angle step
of 4◦. The range threshold to the focal point in line-based
segmentation was tuned to 18.0. The angle threshold in
polyline-based segmentation was configured to 8.0◦.

As shown in Table II, when the Recall rate of each method
is all around 0.73, the polyline-based edge segmentation
method achieves the highest precision, which is much better
than the ray-based method (+23.2%) and line-based method
(+11.2%).

C. Odometry & Mapping

1) Trajectories with Different Edge Segmentation Meth-
ods: Since the performance of a SLAM system is signifi-
cantly influenced by the quality of input data, we recorded
and evaluated the bird’s-eye odometry with the edges ex-
tracted by different segmentation methods. The estimated
trajectories are plotted in Fig. 7 and the root mean square
(RMS) errors to the ground truth are listed in Table III,
which are computed by the evaluation tool presented in
[32]. The results suggest that the bird’s-eye edges extracted
by polyline-based method can dramatically improve the
performance of visual odometry system compared with the
other two methods.

2) Trajectories with Different Frameworks: To demon-
strate the effectiveness of bird’s-eye edges, the proposed
framework was compared with the ORB feature based and
free-space scan based method in our previous work [12]. In
addition, since the extracted edges can be represented with
point clouds, it is very convenient to input such data to a
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Fig. 8. The estimated trajectories with different SLAM frameworks.

TABLE IV
ABSOLUTE TRAJECTORY ERROR OF DIFFERENT FRAMEWORKS

Method RMSE [m] Mean [m] Max [m]
ORB Feature 3.264 2.702 5.977

ORB Feature +
Free Space Scan 2.776 2.245 5.114

Bird’s-Eye Edge Odometry 2.069 1.859 3.560

Bird’s-Eye Edge +
Cartographer (no loop closure) 2.651 2.414 4.136

Bird’s-Eye Edge +
Cartographer (loop closure) 1.397 1.173 2.253

Bird’s-Eye Edge SLAM 1.310 1.225 1.918

general LiDAR based SLAM system like Cartographer [33]
in our experiments.

As shown in Fig. 8 and Table IV, on the one hand,
compared with the ORB features and free-space scans, the
bird’s-eye edge based odometry has achieved better results,
which suggests the hybrid edges are more effective and stable
than the point features in our task; on the other hand, when
inputting the bird’s-eye edges to Cartographer, the pure
odometry without pose graph optimization has an obvious
drift, which can be eliminated after the loop closure.

VII. CONCLUSIONS

In this paper, we proposed a semantic visual SLAM frame-
work based on hybrid edges extracted from the bird’s-eye
view images, which can be applied to the AVP tasks. On the
one hand, compared with traditional sparse point features, the
edges are much denser and more robust. On the other hand,
compared with recent semantic road marking point clouds,
our segmentation methods only need coarse free-space anno-
tations for training, instead of the time-consuming and labor-
intensive labeling for road markings. By leveraging the IPM
distortion effect, most noisy glare edges and distorted object
edges can be filtered by the proposed segmentation methods.
With the input of extracted edges, a visual SLAM system was
built and evaluated on the practical data in an underground
garage. Experimental results demonstrated the effectiveness
of our method and its potential to be integrated into other
general SLAM frameworks. In the future, we will further
develop a robust and hierarchical semantic visual SLAM
framework that combines multimodal semantics and multiple
sensors for the AVP applications.
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