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Abstract:
An uncalibrated visual servoing system is described with a humanoid robot for Chinese calligraphy. The system is designed based

on Kalman-Bucy filter with the help of object detector by Continuously Adaptive MeanShift (CAMShift) algorithm. Under this control
scheme, a humanoid robot could perform satisfactorily in grasping a brush and writing strokes in sequences according to the structure
of Chinese characters, despite the inaccuracy in system modeling. The proposed method is shown to be robust and effective in its
performance through a task of Chinese calligraphy by the NAO robot.
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0 Introduction

Endowing robots with humanoid ability is essential for
robots to be accepted in human society more easily [1-4].
Besides various applications, it is expected that the robot
could provide special entertainment and assistance for peo-
ple. Chinese calligraphy is an advanced skill for human be-
ings in Chinese civilization along Chinese history of more
than 5000 years. It is an art expressing the emotion and
aesthetics of the author. It will be useful and encouraging
if robots could write Chinese calligraphy like humans do.

Since the writing brush specially designed for Chinese
calligraphy is soft, strokes of different and variable widths
can be drawn. In fact, slight changes in the strength, ori-
entation as well as moving speed exerted on the brush can
result in quite different effects. Hence, Chinese calligraphy
writing is basically movements in three dimensions instead
of two. A thick stroke can be written through pressing the
brush heavily [5]. Whether a sharp corner or a smooth cor-
ner can be formed in a stroke depends on how the author
rotates the writing brush. A blurred stroke comes from fast
speed [6]. These characteristics bring huge difficulties to
Chinese calligraphy and simultaneously make Chinese cal-
ligraphy a charming art [7].

There have been many efforts to enable robots the a-
bility of performing Chinese calligraphy. Yao and Shao

[6] presented the modeling of Chinese characters achieved
through thinning the image, detecting the skeleton and
modeling the skeleton with B-splines. This modeling
works well on ancient style Chinese character calligraphy
and is shown to be effective on a manipulator. However,
this method only deals with the trajectories of strokes and
ignores the changes in width of strokes and the orientation
of the brush. Lam and Yam [8] described a technique to
generate stroke trajectories and proved it to be effective on
a 5-DOF robotic art system. Herein, the stroke locus is rep-
resented by footprints along it. The changes in stroke width
are taken into account in the water-droplet-like model of
footprint, whereas the brush is limited to move in longitu-
dinal direction. Besides, strokes written in this way are not
so smooth due to the discrete footprints. Zhang and Su [9]
proposed a sensor management model, which is based on
fuzzy decision tree (FDT). The model can integrate nec-
essary prerequisite knowledge of Chinese calligraphy and
is verified on an Adept 604S robot manipulator. Neverthe-
less, the proposed model is implemented on a manipulator
with 4DOF instead of a humanoid robot. These efforts have
three mutual problems. First, the orientation of the brush is
fixed during writing, which will limit the writing perfor-
mance. Second, all these researches are implemented on
manipulators without human-robot interaction. Third, the
workspace is restricted by the fixed base of the robot.

†Corresponding author.
E-mail: jbsu@sjtu.edu.cn. Tel.: +86 136 6179 3223.
This work was supported by National Natural Science Foundation of China under the grant 61221003.



2

Compared with enabling manipulators the ability of per-
forming Chinese calligraphy, allowing humanoid robot-
s to perform it has more advantages. Humanoid robots
can be accepted by humans in quotidian lives more eas-
ily due to their appearance. Therefore, humanoid robots
with the skill of performing Chinese calligraphy can teach
children writing and amuse elderly people. Furthermore,
the workspace of humanoid robots can be expanded larger
than that of manipulators because they can walk around,
and consequently the space of writing is enlarged. In addi-
tion, humanoid robots can keep learning different kinds of
strokes through interaction with humans.

A complete writing task on a humanoid robot includes
grasping [10-13] and writing with a brush. There are some
challenges in this task. Compared with models of a ma-
nipulator, less accuracy will be obtained by those of a hu-
manoid robot, involving vision model and the relationship
between visual space and workspace. Therefore, uncali-
brated visual servoing control [14][15] is the key tech-
nique to ameliorate grasping performance. Besides, differ-
ent from manipulators which are fixed firmly on tables,
a humanoid robot stands on two feet like human beings.
Hence the body will shake slightly when its hand is mov-
ing, which will bring noises to images and disturbances to
the motion system. Such noises and disturbances will dete-
riorate visual servoing control. In addition, the brush hand-
ed by the person may move in an irregular track, which is
challenging for object detectors to handle.

In this paper, a complete task of Chinese calligraphy
with a humanoid robot is explored. The robot is supposed
to grasp a brush handed by a person and then write a Chi-
nese character. A robust uncalibrated visual servoing sys-
tem based on Kalman-Bucy filter [16] with the help of
an objector detector by Continuously Adaptive MeanShift
(CAMShift) algorithm [17] is described to implement this
task. Finally experiment is carried on with the NAO robot
[18] using the described approach and the results verifies
the robustness to noises in images, disturbances on motion
and irregular target trajectory.

The rest of this paper is organized as follows. In Section
II, a robust visual servoing system is described, including
the whole structure, object detection technique based on
CAMShift algorithm and an uncalibrated visual servoing
controller based on Kalman-Bucy filter. Experiments on a
humanoid robot, NAO, using the proposed method and the
partitioned Broyden’s algorithm are presented in Section
III respectively to verify the performance of the proposed
method. Finally, conclusions and future work are given in
Section IV.

1 Robust visual servoing system

1.1 System structure

The visual servoing system proposed in this paper is ex-
pressed in the form of diagram in Fig. 1. As indicated in the
diagram, the state estimator based on Kalman-Bucy filter
estimates image Jacobian matrix using control quantity ex-
erted on the robot and image features of robot end-effector.
Herein, the image features are captured by CAMShift al-
gorithm, and the image Jacobian matrix is used to calculate
the control quantity for the next control period. Future im-
age features of robot end-effector act as set values of the
control circle and can be predicted with the present and
past values.
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Fig. 1 Robust visual servoing system .

1.2 Object detection

CAMShift algorithm was derived from the earlier Mean-
shift algorithm [19] and aims at detecting objects in contin-
uous video. According to CAMShift algorithm, the center
of mass of the target object is calculated through Mean-
Shift algorithm using color feature. The range of the tar-
get object in current image is figured out by adjusting the
size of the searching window, and this range information
is used to set original searching window in the next image.
By repeating this process, the target object is tracked con-
tinuously. The block diagram of CAMShift algorithm is as
Fig. 2 shows. The specific process of CAMShift algorithm
is as follows [17]:
(1) Transform the captured RGB image into an HSV im-

age.
(2) Set original tracking area of the target object, and set

searching window.
(3) According to MeanShift algorithm, pick up H(hue)

channel from HSV images to form a new grey im-
age. And histogram of a selected searching area in
this grey image, called hue histogram of the corre-
sponding area in the original image, is built. Taking
this histogram as searching table, H channel of the
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Fig. 2 Block diagram of CAMShift algorithm [17].

original image is mapped into a new grey image
(back-projection image). Then the center of mass of
searching area in this new image is calculated. Cal-
culate two-order moment M02 = ΣuΣvv

2 · I(u, v),
M20 = ΣuΣvu

2 ·I(u, v), where u and v are the coor-
dinates of the pixel in the image. Based on zero-order
moment, one-order moment, two-order moment, de-
flecting angle of the target object can be calculated:

θ = arctan(
2× (M11

M00
− ucvc)

(M20

M00
− u2

c)− (M02

M00
− v2c )

)/2, (1)

where uc and vc are the coordinates of the pixel in the
image.

(4) Adjust the size of searching window according to the
calculation below:

a=
M20

M00
− u2

c , (2)

b= 2(
M11

M00
− ucvc), (3)

c=
M02

M00
− v2c , (4)

r=

√
(a+ c) +

√
b2 + (a− c)2

2
, (5)

s=

√
(a+ c)−

√
b2 + (a− c)2

2
, (6)

where r and s represent length and width of new
tracking window, respectively.

(5) Determine whether coordinate of center of mass con-
verges or not according to MeanShift algorithm. If

it converges, go to step (6), otherwise calculate new
center of mass and set it as the center of searching
window, then go to step (3).

(6) Output detection result, and update tracking window
and searching window, then go to step (1).

The center of mass of the searching window represents
the position of the object, which refers to the right hand of
the robot or the brush in our task. The coordinates of this
point will construct visual features and be used to calculate
control quantity in the visual servoing control.

1.3 Uncalibrated visual servoing control based on
Kalman-Bucy filter

To estimate image Jacobian matrix with Kalman-Bucy
filter, the model of visual servoing system should be trans-
formed into the form of state function of linear system.
Herein, the system state is formed with the members of im-
age Jacobian matrix and the system output is the changes
in visual features. Since Kalman-Bucy filter is tolerant of
noises on system state and system output in a linear system,
the visual servoing control method based on Kalman-Bucy
filter is tolerant of the disturbances on the visual servoing
system and noises on the images accordingly.

The model of the visual servoing system based on image
Jacobian is defined as follows:

ṁ = L(p) · ṗ, (7)

where

L(p) =
∂m

∂p
=


∂m1(p)
∂p1

. . . ∂m1(p)
∂pn

...
. . .

...
∂ml(p)
∂p1

. . . ∂ml(p)
∂pn


l×n

. (8)

Herein, m ∈ Rl presents the visual feature of robot end-
effector in images, p ∈ Rn represents the coordinate of
robot end-effector in task space, L(p) ∈ Rl×n represents
the image Jacobian matrix, which is unknown in uncali-
brated visual servoing and needs to be estimated through
Kalman-Bucy filter. Transforming equation (7) into dis-
crete form, we get

m(k + 1) ≈ m(k) + L(p(k)) · △p(k). (9)

A vector, x, is constructed with elements of the image Ja-
cobian matrix as follows:

x = ((
∂m1

∂p
)T (

∂m2

∂p
)T . . . (

∂ml

∂p
)T )T , (10)
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where ∂mi

∂p = (∂mi

∂p1

∂mi

∂p2
. . . ∂mi

∂pn
)T (i = 1, . . . , l) is the

transpose of a row of the image Jacobian matrix L(p). Be-
sides, another vector, y, is defined as the change of image
feature caused by movement of robot end-effector:

y(x) = m(k + 1)−m(k), (11)

Treating x as the state vector, y as the output vector, and
substituting (10),(11) into (9), we get the state function of
the system: {

x(k + 1) = x(k) + η(k)

y(k) = H(k)x(k) + w(k),
(12)

where η(k), w(k) present state noise and observing noise
of the above linear system respectively, which are assumed
to be independent white Gauss noises satisfying:

E(η(k)) = 0

cov{η(k), η(j)} = Rηδkj

E(w(k)) = 0

cov{w(k), w(j)} = Rwδkj

cov{η(k), w(j)} = Rηw = 0,

(13)

and

H(k) =


∆p(k)T . . . 0

...
. . .

...

0 . . .∆p(k)T


l×ln

. (14)

Then, the image Jacobian matrix is estimated as the state
of system through Kalman filter [15]:

G(k + 1) = F (k) +Rη, (15)

K(k+1) = G(k+1)H(k)T [H(k)G(k+1)H(k)T+Rw]
−1,

(16)
F (k + 1) = [I −K(k + 1)H(k)]G(k + 1), (17)

x̂(k+1) = x̂(k)+K(k+1)[y(k+1)−H(k)x̂(k)], (18)

where x̂(k) is the estimated value of x in time k, K(k+1)

is the Kalman gain matrix, G(k + 1) is covariance matrix
of the predicted error, F (k + 1) is the covariance matrix
of filter error in the theory of Kalman filter. The initial-
ized value, x̂(0), which is constructed with the members
of the initialized image Jacobian matrix, can be calculat-
ed by least square algorithm with image feature changes
caused by a three-step trial movement [16].

After estimating the image Jacobian matrix, the control
quantity to control end-effector of the robot can be calcu-
lated next. Herein, we get the control quantity in discrete

form:

u(k) = △pg(k) = L̂(k)+(m∗(k)−mg(k)), (19)

where m∗(k) is the expected image feature of the end-
effector of the robot, mg(k) is the image feature of the
target object, L̂(k)+ is the Moore-Penrose inverse matrix
of the estimated image Jacobian matrix L̂(k). m∗(k) can
be approximated by the estimated image feature of the ob-
ject in the next period, m̂o(k+1), which can be calculated
through one-order prediction:

m̂o(k+1) = mo(k)+(mo−mo(k−1)) = 2mo(k)−mo(k−1).

(20)
Define em(k) = m̂o(k + 1) − mg(k), and consider the
boundary of end-effector’s velocity, then control quantity
is adjusted into:

u(k) = λk · L̂(k)+ · em(k), (21)

where

λk = min(
∥△pmax∥

∥L̂(k)+ · em(k)∥
, 1). (22)

Herein, △pmax is the upper limit of moving velocity of
robot’s end-effector, so that the control quantity doesn’t ex-
ceed robot’s moving capacity.

2 Experiments

A visual servoing system is presented for humanoid
robots in this paper. To verify this approach, a task of Chi-
nese calligraphy is designed and implemented in this sec-
tion. This task includes two phases. The robot reaches for
and grasps a brush handed to it by a participant in the first
phase and writes Chinese characters with the brush in the
second phase. The former phase is done using the visu-
al servoing system described in this paper while the latter
phase is done with the motion generator through demon-
stration provided by Aldebaran Robotics.

The experiment platform is designed as shown in Fig. 3.
This system mainly consists of a NAO robot, a laptop and t-
wo USB cameras which are fixed on the NAO robot’s head.
In the task, the NAO robot’s right arm is controlled to grasp
the brush and finally write Chinese character. This arm has
6 DOFs including 2 in shoulder, 2 in elbow, 1 in wrist, and
one in hand. Since there is no shared view field between the
NAO robot’s own eyes which are embedded on its face, we
fix two cameras on NAO robot’s head to endow the robot
with stereo vision.
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Fig. 3 Experiment platform based on the NAO robot.

The visual servoing task on this platform is done through
two parallel processes. One process is on laptop, which
captures images, executes image processing and calculates
control quantity. The other one is done by the NAO robot,
which plans motion and controls robot’s right arm. Fig. 4
is a schematic drawing that illustrates the two working par-
allels. Herein, the computer captures images through two
cameras and detects object from these images. Then we get
the positions of the right hand of the NAO robot and the
brush from the view of the two cameras. These position-
s are used as image features to estimate Jacobian matrix
online in subsequent visual servoing calculation. With Ja-
cobian matrix, control quantity is calculated and sent to the
NAO robot through Ethernet. Finally the NAO robot plans
its motion and control its right hand to reach for and grasp
the brush.

The values of essential parameters in the experiment are
given in table 1. Herein, the maximal velocity in the table
represents the maximal velocity of the NAO’s hand in ev-
ery coordinate direction. P (0), Rη, and Rw are parameters
in visual servoing control method based on Kalman-Bucy
filter.

Table 1 Essential Parameters for the experiment.

Parameter Value

Resolution of images 320× 240 (pixel)

Maximal velocity 1 cm/s

F (0) 10−2 I12

Rη 50 I12

Rw 500 I4

Control period 0.8 s

2.1 Object detection

In the beginning, experiment is carried out to verify the
robustness of the object detection technique in the tracking

strategy proposed in this paper. In this section, the end-
effector of the NAO robot’s arm is controlled to move be-
fore a complex background consisting of objects of differ-
ent shapes and colors. The CAMShift algorithm is utilized
to detect and localize the moving end-effector in the im-
age captured by one camera of the visual servoing system.
The detecting result is shown in Fig. 5, where a red cir-
cle marks the detected end-effector and the center of the
circle represents the position of the detected end-effector.
It can be seen from the figure that the end-effector is de-
tected correctly and the performance of the algorithm is
rarely effected by the background. The position of the de-
tected object changes within several pixels. It should be
pointed out that there is object with the same color, red,
of the end-effector in the background and the end-effector
move across the red area in the image. Since hue(H) chan-
nel of HSV image is employed in detection, the existence
of the red object brings challenge to this task. When the
end-effector is moving by the red object, the target area in
CAMShift algorithm is extended to contain the object. N-
evertheless, new addition in the area only adjusts the size
in limited level. When the end-effector moves away, the
target area is back to the end-effector.

2.2 Brush grasping

In this experiment, the brush is moving in an irregu-
lar track, and the velocity is around 1cm/s. The task is
to detect, track and finally grasp the brush with robot’s
right hand. After completing the task with the visual track-
ing strategy proposed in this paper, a comparison experi-
ment between our strategy and a classical visual servoing
method[15] combined with CAMShift algorithm is carried
out to verify the performance of our strategy. To simplify
calculation and raise tracking speed, marks in different col-
ors are made on the robot’s hand and target to be detected
by cameras.

Original positions of NAO’s right hand in images are
[172, 168](pixel) for left camera and [192, 174](pixel) for
right camera. Original positions of target object in images
are [270, 115](pixel) for left camera and [272, 31](pixel)
for right camera.

Considering that the value of image Jacobian matrix
varies as the position and orientation of the robot’s end-
effector changes, the initialized value of image Jacobian
matrix is calculated according to the position and orienta-
tion of the NAO robot’s hand at the beginning of the ex-
periment. Control NAO’s hand to make a three-step trial
movement from the beginning position. Making use of the
coordination changes of NAO’s right hand in images cap-
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Fig. 5 Moving end-effector detection in complex background.

tured from the two cameras during the trial movement, o-
riginal value of image Jacobian matrix is calculated. Ac-
cording to the relation ṁ = Lṗ, we get ∆m = L∆p,
where ∆m and ∆p represent changes in image feature
and Cartesian coordination, respectively. Then the nom-
inal image Jacobian matrix is achieved through Ĵ(0) =

[∆m1,∆m2,∆m3][∆p1,∆p2,∆p3]
T . The matrix calcu-

lated here is

L̂(0) =


228.4 −1005.7 1079.2

−2646.5 −364.6 452.1

−459.9 −1470.7 −882.7

−2304.7 570.6 498.2

. (23)

Fig. 6 describes how NAO’s hand tracks the brush. Dur-
ing the task, the binocular vision system captures images
of the task space. The NAO’s hand and the brush are de-
tected and located in the images through CAMShift algo-
rithm according to the tracking strategy proposed in this
paper. Then the task is characterized in the visual space.
In the very beginning, the image error between the mark
on NAO’s hand and the brush is 111 pixels observed from
the left camera and 163 pixels from the right camera. The
image Jacobian is estimated according to Kalman-Bucy es-

timator iteratively, based on which control instructions are
obtained. NAO’s hand tracks the mark on the brush with
the control instructions. The control quantities are reduc-
ing as the distance between NAO’s hand and the brush be-
comes smaller. Finally, NAO’s hand reaches to the brush
in 17 steps. Image errors between marks on NAO’s hand
and the brush in the end of tracking process are within 10
pixels which are caused by the sizes of target object and
NAO’s hand.
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Fig. 6 Brush tracking trajectories in the stereo vision system.

The experimental results verify that the NAO robot can
track a moving target accurately with its hand using the
proposed visual servoing system. This approach is shown
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to be robust to image noises, disturbances caused by slight
shake of NAO’s body and irregular object motion.
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Fig. 7 Tracking errors observed from two cameras. (a) is obtained
using the partitioned Broyden’s method; (b) is obtained using the
strategy in this paper.

Then our tracking strategy consisting of CAMShift algo-
rithm and Kalman-Bucy filter-based visual servoing con-
trol method is compared with the partitioned Broyden’s
method combined with CAMShift algorithm here. NAO’s
hand is controlled from the same position in the robot co-
ordinate to track the same point with these two strategies,
respectively. The initial position of the hand’s end-effector
observed from the two cameras are (184, 89) pixel and (99,
56) pixel, respectively. The initial position of the target
point observed from the two cameras are (184, 89) pix-
el and (99, 56) pixel, respectively. The control results are
shown in Fig. 7. It can be seen from the figure that the strat-
egy based on the partitioned Broyden’s method converges
in 13 steps while the strategy proposed in this paper con-
verges in 11 steps. In addition, the tracking error in every
direction in the image can reach 4 pixels using the par-
tition’s method while error is within 1 pixel utilizing our
strategy. The visual tracking strategy presented in this pa-
pre is validated to be accurate, fast and robust against nois-
es and disturbances for such interaction task on humanoid
robots.

2.3 Writing with a brush

In this task, the NAO robot reaches for and grasps a
brush handed to it with its right hand using the visual ser-
voing system proposed in this paper and writes Chinese
characters on paper with the brush. The writing phase of
the task is realized by motion generator through demon-
stration using Choregraphe software provided by Alde-
baran corporation.

The positions of NAO’s hand and the brush from the
view of the two cameras in the beginning and the end of
the task are shown in Fig. 8, where red circles and green
circles indicate NAO robot’s right hand and the brush de-
tected by CAMShift algorithm described in this paper, re-

spectively. The writing result is shown in Fig. ??. These
two characters, Jiao and Da, are written according to the
requirement of Chinese calligraphy, thereby reflecting cer-
tain meanings and emotions. The strokes and structures of
these two characters are symmetrical, which is appreciat-
ed very much in the aesthetic of Chinese traditional civ-
ilization. The character, Jiao, which looks like a smiling
face, indicates the ideal state of human beings in harmo-
ny with the whole world. The character, Da, reflects open
mind with the extended strokes.

(a) (b)

(c) (d)

Fig. 8 Images captured by two cameras before and after grasping.
(a) is from left camera before grasping; (b) is from right camera
before grasping; (c) is from left camera after grasping; (d) is from
right camera after grasping.

Fig. 9 Chinese characters written by the NAO robot.



8

3 Conclusion and future work

This paper proposes a visual servoing system for per-
forming Chinese calligraphy with a humanoid robot. The
visual servoing controller in this system is based on
Kalman-Bucy filter and is robust to the inaccuracy of the
system modeling with the help of the object detector by
CAMShift algorithm. With the proposed approach, the
NAO robot performs satisfactorily in the experiment of
writing Chinese characters. Moreover, the results of the
experiment indicate the robustness of the algorithm to the
noises in images, disturbances on motion system and irreg-
ular object motion.

In the future, we hope to enhance the robot’s ability of
recognizing the object and grasping it from an appropri-
ate attitude. In addition, the humanoid robot is expected
to learn how to write different strokes without demonstra-
tion but with help from humans through interaction. Fur-
ther work will also be done on improving the robot’s in-
telligence to recognize every stroke in a Chinese character.
The humanoid robot will perform Chinese character like
human beings if these ideas come true.
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