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ABSTRACT In the current COVID-19 pandemic, people expect to use robots to replace humans to
complete the disinfection work in public places. Since different regions in the environment have different
risks, in addition to the conventional SLAM capability, the robot also needs to be able to recognize and
distinguish different objects in the scene to complete customizable disinfection tasks. In this paper, we
propose a LiDAR-based semantic mapping system that can be used for robotic disinfection tasks. By
using the prior information about the scene structure, our system can extract different levels of semantic
information from the raw point cloud, so as to not only construct an occupancy grid map for navigation,
but also construct a hierarchical semantic map that meets the needs of customizable disinfection tasks,
including setting the navigation waypoints, disinfection distances and disinfection time. The effectiveness
of our proposed system is proved in the real-world metro disinfection applications.

INDEX TERMS Disinfection robot, structure-aware, semantic mapping, prior knowledge

I. INTRODUCTION

With the current global pandemic of COVID-19, the dis-
infection of public places has gradually attracted people’s
attention. Since manual disinfection operations are very time-
consuming and labor-intensive, researchers are trying to use
autonomous robots to complete the disinfection tasks to re-
duce the burden on related staffs and avoid potential infection
risks [1], [2].

Many scenarios that need to be disinfected are relatively
standard structured scenes, such as metros and buses. Taking
the metro car in Fig. 1 (top) as an example, the disinfection
robot needs to autonomously navigate from the start to the
end of the metro and perform disinfection task (such as
spraying disinfectant or emitting ultraviolet rays) at the same
time.

Simultaneous localization and mapping (SLAM) is the
core functionality for the robot to complete the disinfection
task. Furthermore, since different structures in the scene
usually have different risks, disinfection tasks often need to
be customizable, that is, the disinfection time and disinfection
distance of different structures are various [3], [4]. For exam-
ple, the seats and armrests in metro cars are the regions most
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FIGURE 1. The disinfection robot working in the metro car (top) and the
semantics in the generated hierarchical semantic map (bottom). Note that
different colors of point cloud represent different structures in the metro car
which should be treated accordingly in customizable disinfection tasks.
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frequently touched by people, so compared to other regions,
longer disinfection time and shorter disinfection distance are
required to ensure a higher disinfection result.

To be able to fulfill the customizable disinfection require-
ments for different structures in the environment, unlike
normal navigation tasks which only require the robot to know
where there are obstacles, disinfection tasks need the robot
to understand the structure around it, i.e., to have a semantic
level understanding.

Therefore, in this paper, we present a LiDAR-based se-
mantic mapping system for robotic disinfection tasks. Our
system can use the scene structure as the prior knowledge to
segment the point cloud and obtain the semantic information
in it, so as to understand the structure around the robot. The
semantics as depicted in Fig. 1 (bottom) can be extracted and
recorded in the map, and finally used to support the robot to
complete customizable disinfection tasks.

II. RELATED WORK
A. LIDAR-BASED SEMANTIC MAPPING
LiDAR-based SLAM system such as GMapping [5], Hec-
tor SLAM [6] and Cartographer [7] are widely applied in
practical applications where the capability of autonomous
navigation for a robot is required. Although these frameworks
have made great success, they are usually designed for gen-
eral navigation tasks which only consider the obstacles and
build occupancy grid maps of the environment. Therefore, it
is not sufficient to directly apply these frameworks to meet
the needs of customizable disinfection tasks.

Compared with traditional SLAM systems, semantic
SLAM systems attempt to extract more deeper and higher-
level information from the raw data and eventually build a
semantic map. Two different levels of semantics have been
widely studied and applied: the feature-level semantics and
the object-level semantics.

1) Feature-level
The feature-level semantics consists of various geometric
primitives, like points, lines and planes detected and ex-
tracted from the input point cloud. In [8], Chen et al. divided
the point cloud into different categories and used such infor-
mation to improve the data association. Line features [9] and
planar surfaces [10] were also extracted from the point cloud
for fast and precise localization in autonomous driving tasks.

2) Object-level
The object-level semantics includes the general objects and
application-oriented objects. General objects can be the
dense/sparse point cloud models or solid figures. Salas-
Moreno et al. matched the objects in the environment to their
dense 3D models and perform the SLAM task at the level
of objects [11], while Bowman et al. proposed an algorithm
to resolve probabilistic data association of 3D objects in
semantic SLAM problems [12].

For those application-oriented object models, such as the
door signs in the building [13], poles [14], [15] and traf-

fic signs [16] in the driving scenes, crops in the precision
agriculture [17], or trees in the forest inventory [18], the
performance of SLAM system usually can be further en-
hanced by integrating such semantic information, and some
task-related requirements can only be fulfilled along with the
optimization.

In our proposed semantic mapping system, the raw LiDAR
point clouds are segmented into different classes in order to
provide semantic-level information for customizable disin-
fection tasks.

B. STRUCTURE AS PRIOR KNOWLEDGE
To boost the performance of general SLAM systems in
specific applications, various prior knowledges of the envi-
ronment and the task are often exploited.

1) Building Structure
Karg et al. introduced the similarity of multi-floor layout
as global constraints to the graph-based SLAM, which was
able to generate consistent maps for multistory buildings
[19]. Boniardi et al. took the architecture floor plans as prior
knowledges to enhance the robustness of robot localization
[20], [21].

2) Aerial Structure
Aerial images captured by satellites or unmanned aerial
vehicles are another source of information that are com-
monly used to assist in the SLAM task. With the extracted
line segments [22] or edges [23] from the aerial images,
the mapping results could be constrained and closer to the
ground-truth. Special application in precision farming by
Pretto et al. demonstrated the effectiveness of fusing the
aerial and ground information for much robust localization
and mapping [24].

3) Geometric Constraints
The orthogonality and parallelism in structured environments
have also been extensively investigated and considered as
the constraints for both data processing and optimization in
SLAM problems. Daoust et al. leveraged the parallelism of
tunnel walls to remove unimportant LiDAR measurements
for localizing a train in challenging underground environ-
ments [25]. The orthogonal and parallel planes in both indoor
[26] and underground [27] environments were utilized for
better mapping performance.

In our framework, considering that the raw 2D LiDAR
point cloud is very sparse and less representative, we also
use the prior knowledge of the scene structure for point cloud
segmentation.

C. APPLICATIONS OF DISINFECTION ROBOTS
Different type of disinfection robots based on the UV-C light
[28] and hydrogen peroxide vapor [29] have been applied to
disinfect public utilities including hospitals, schools as well
as metros investigated in this paper. As discussed in [30], the
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FIGURE 2. The proposed semantic mapping framework for customizable disinfection. The scene structure information is provided to the system as the prior
knowledge. The point cloud segmentation subsystem (Sec. IV) first builds correspondences between LiDAR point cloud and the scene structure with a
structure-aware method, followed by an optimization-based refinement module and an object detection module to further extract feature-level and object-level
semantic information in the scene, respectively. The semantic mapping subsystem (Sec. V) builds and updates a hierarchical semantic map with the poses
estimated by a LiDAR odometry module. The constructed semantic maps are further used to support the task planning in customizable disinfection applications.

disinfection performance may be affected by various factors.
Due to the shadows caused by occlusions, the UV-C light or
chemicals may not always touch the surface of objects in the
environment. The effectiveness also reduces as the distance
increases. In [31], the authors proposed to identify potential
contamination areas for adaptive robotic disinfection in built
environment. In [32], Conte et al. designed a disinfection map
to evaluate the disinfection performance w.r.t the distance
between the robot and targeting structures.

Because some regions of the scene to be disinfected are
high-touch and high-risk, the robot needs to take longer
disinfection time at a shorter distance to them in order to
ensure the complete disinfection. In our system, we mainly
rely on the semantic-level understandings of the scenario to
fulfill such high-level and customizable requirements.

III. FRAMEWORK
In this section, the pipeline and structure of the proposed
semantic mapping system will be described. As shown in
Fig. 2, the system can be divided into three parts:

• The point cloud segmentation subsystem is designed to
segment the point cloud by associating them with the
structure of the metro car, followed by an optimiza-
tion based refinement procedure. To further leverage
the object-level information, the stanchions are also
detected from the point cloud with the prior knowledge
from the scene structure.

• The semantic mapping subsystem consists of a LiDAR
odometry module and a mapping module. The LiDAR
odometry module provides the poses of the robot in
the metro car, which can be further used to fuse the
extracted semantic points and stanchions and eventually
build a hierarchical semantic map.

• The customizable disinfection subsystem finally utilizes

the rich semantic information in the scene to plan
the robot’s behavior, including placing the navigation
waypoints, setting different disinfection distances and
disinfection time for different regions.

In general, the semantic mapping framework we designed
has three characteristics:

• Semantic: Semantic information (e.g., different cate-
gories of points including the door, wall, seat, joint,
stanchion in the metro car) is extracted from the raw
LiDAR point cloud, given the structure of the scene as
prior knowledge. Then such semantic information will
be merged to construct a hierarchical semantic map of
the scene, which is necessary for customizable disinfec-
tion tasks, especially for the disinfection distance and
time control.

• Adaptive: Our framework can be adapted to various
scenarios with different structures. On the one hand,
to segment the point cloud, the prior knowledge from
scene structure can be configured according to different
scenarios. On the other hand, the extracted semantic in-
formation used by the task planning process can also be
selected according to customizable disinfection tasks.

• Online: Since the prior knowledge of the scene structure
can be integrated, our framework is very lightweight and
fast enough to run on the robot in real-time. The con-
struction of the scene semantic map can be completed
along with the disinfection process.

In the following two sections, we will first describe the
details of structure-aware point cloud segmentation, followed
by the semantic mapping procedure. For the customizable
disinfection, we will demonstrate its implementation and
application in the experiment section.
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IV. STRUCTURE-AWARE POINT CLOUD
SEGMENTATION
Since the 2D LiDAR point cloud is not as dense as the 3D
LiDAR point cloud or camera images, it is usually difficult to
extract the semantic information with a direct segmentation
method. As reviewed in Sec. II-B, the information of scene
structure can be considered as constraints in the SLAM sys-
tem. Similarly, we propose to leverage the prior knowledge
of scene structure in the semantic perception process. By
associating the point cloud with the scene structure which
can be manually annotated, we can obtain the corresponding
label for each part of the point cloud.

A. REPRESENTATION OF THE SCENE STRUCTURE
The most accurate information of the scene structure is the
floor plan, e.g., the layout of a metro car or bus. However,
since there are many types of floor plans for different scenes
and may not be easy to obtain, in order to enhance the versa-
tility of the method, we suggest to simplify the description of
the scene structure as much as possible.

Taking the metro car in Fig. 1 as an example, we can find
that the distance from different part of the car to the center
axis of the care is stable throughout the scene, although it
can be various among different type of cars. Thus, we can
model the such scenarios with a group of parallel lines, i.e.,
structure reference lines, as shown in Fig. 2, which can be
easily generalized to other similar scenes like the buses and
trains.

B. STRUCTURE-AWARE DATA ASSOCIATION
To associate the point cloud with the scene structure, we
consider it as a registration or pose estimation process, that
is, estimating the robot’s pose in the scene. Then after the
successful registration, we can extract the corresponding
label for each laser point by the nearest neighbor search
(NNS).

In the scene like the metro car, a two-stage grid-based
searching method is designed to establish the initial corre-
spondences between the point cloud and the scene structure:

• Rotation Estimation. We first attempt to rotate the
laser point cloud with a sampled angle in a predefined
angle range. Then the laser points are transformed to the
rotated frame of the robot, projected along the rotated
heading of the robot. The histogram of the projected
laser points is computed along the lateral direction
which is perpendicular to the rotated heading of the
robot. Since most of the points fall on the corresponding
reference lines, it can be imagined that, the distribution
of the projected points will cluster better when the
selected rotation angle is closer to the ground-truth
orientation. Here we use the entropy of the distribution
to find the best rotation angle:

ψ∗ = argmin
ψ

N∑
i=1

−pi(ψ) log(pi(ψ)), (1)

where ψ ∈ [−ψ0, ψ0] is the sampled rotation angle, and
pi(ψ) ∈ [0, 1] is the corresponding ratio of the projected
points located in the i-th lateral bin.

• Position Estimation. Based on the rotated laser point
cloud, we can further perform the lateral grid searching,
since the reference lines can not provide longitudinal
constraints. For each given structure reference line and
lateral movement step, we can compute the number
of points that fall in a specific distance range of each
reference line. The lateral position corresponding to the
maximum number of matching points will be consid-
ered as the best estimation.

C. OPTIMIZATION-BASED REFINEMENT
After the initial data association, the point-line correspon-
dences can be computed by a distance threshold. Then we
can perform a further refinement by accurately estimating
the robot’s pose in the reference frame Tref

robot, which can
be obtained by solving the following non-linear least squares
problem:

min
Tref

robot

N∑
i=1

wi M∑
j=1

dl(l
ref
i ,Tref

robotp
robot
ij )

 , (2)

where probotij is the j-th laser point corresponding to the i-th
reference line lrefi , dl(l,p) is the point-to-line distance, wi is
the weight for the i-th reference line.

Then we can accurately align the point cloud to the scene
structure and refine the initial correspondences. Together
with the estimated local pose of the robot in the scene, we can
further detect objects in the point cloud to obtain the object-
level semantic information.

D. OBJECT DETECTION
As required by the customizable disinfection task, the robot
needs to distinguish different objects in the scene, for ex-
ample, the seats and stanchions in the metro car, so that the
disinfection time and distance can be configured accordingly.

For some objects like the seats, because of their relatively
large size, they can be easily and accurately identified with
the structure-aware segmented results. However, it is not
trivial to detect small objects like the stanchions in the metro
car due to their small (the diameter is ∼3cm) and reflective
surfaces. Thus, on the one hand, valid points for these objects
may be very few when it is too far away; on the other
hand, the shadow effect may influence the detection when
the robot is close to them. As depicted in Fig. 3, in the metro
car scenario, we design a two-stage method to extract the
stanchion points and remove those noisy ones: line fitting &
euclidean clustering.

To coarsely select the candidate stanchion points, we first
transform the laser points to current reference frame so that
the points are aligned to the reference lines. Since the stan-
chions in a car precisely lie on a straight line, the parameters
of this line can be estimated by a random sample consensus
(RANSAC) based line fitting method. Most of the noisy
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FIGURE 3. Stanchion detection based on line fitting and euclidean clustering.
The laser point cloud are first transformed to the reference frame. The region
in gray is used for line fitting, while the light green region is used to remove
outliers in black caused by the shadow effect. The green circle shows the
range threshold for adding points to the same stanchion, while those points in
red are filtered because their distances to previous stanchions are not
sufficient to be considered as a new stanchion.

points caused by shadow effect will be filtered through a
distance threshold to the fitted line.

To further distinguish between different stanchion in-
stances, the stanchion points are examined from near to far
along the fitted line. If the point is far enough to the previous
point, a new stanchion will be added to the buffer. If the
consecutive points are near enough to the previous points, the
point will be added to current stanchion. Otherwise it will be
considered as an outlier.

After all stanchion points are detected and clustered, the
position of each stanchion is computed by averaging the
position of its points. Finally, the detected stanchions are
transformed to the map with the robot’s odometry and fused
with previously recorded ones or inserted as new ones.

V. SEMANTIC MAPPING
With the segmented point cloud and detected objects in
robot’s frame, we can use a LiDAR-based odometry system
(e.g., Cartographer) to provide relative motion estimation
in the global map. Then with the detected hierarchical se-
mantics (i.e., labeled points, reference lines and objects like
stanchions), we can build a hierarchical map of the metro.
The semantics contained by this map can be used not only
for navigation, but also for the customizable and high-level
disinfection tasks. As shown in Fig. 1, our hierarchical se-
mantic map consists of four types of semantics: occupancy
grids, semantic points, reference lines and stanchions.

1) Occupancy Grid Map
The occupancy grid map is the standard mapping result of
common LiDAR-based SLAM system. It can be obtained
by probabilistically fusing the raw laser point cloud with
the robot’s pose. Although it is useful for path planning and
localization in general navigation tasks, it is not sufficient for
customizable disinfection tasks, since only the obstacle and
free space information are recorded.

2) Semantic Point Cloud
By leveraging the prior knowledge of scene structure, the raw
laser point cloud can be classified into different categories

TABLE 1. Stanchion Object Definition

Property Value Description
Index i The stanchion index in the map

Radius r Radius of the stanchion

Centroid (x, y) Position of the stanchion centroid

Std. (σx, σy)
Rolling standard deviation
of the centroid’s position

Points {p1, p2, . . . , pn} Laser points of the stanchion

State
s ∈ {Initial, Candidate,

Accepted, F ixed,
Removed}

State of the stanchion

Visibility v ∈ {True, False} Whether it is visible to the robot

to represent different part of the scene. With the estimated
robot’s poses given by the LiDAR odometry module, the
segmented point clouds are accumulated to generate the
global semantic point cloud map.

3) Reference Line Map
The reference lines form a representation of the structure of
the scene. With the current segmented point cloud, on the one
hand, the local reference frame in which the reference lines
are defined is updated to make the reference lines align to
the points in a sliding window by a similar optimization as
Eq. (2); on the other hand, previous added points are refined
and only the inliers are reserved by a distance threshold
for the reference lines, which can effectively remove those
incorrectly classified points.

4) Stanchion Map
The stanchion map is built with the detected stanchions in
each frame of laser point cloud. Each stanchion object has
the properties illustrated in Table 1. Given the robot’s pose
in the map Tmap

robot, the centroid of the i-th stanchion Pmapi is
updated by optimizing the following problem:

min
Pmap

i

M∑
m=1

dp(P
map
i ,Tmap

robotp
robot
m )︸ ︷︷ ︸

new-point-to-stanchion distances

+w

N∑
n=1

dp(P
map
i ,pmapn )︸ ︷︷ ︸

existing-point-to-stanchion distances

,

(3)

where probotm is the m-th newly detected point corresponding
to the i-th stanchion, and pmapn is the n-th existing point. The
weight factor w is used to balance the influence of the new
data. After the update of the centroid, the existing and newly
added points will be refined with the stanchion’s radius. Also,
the maximum number of points is restricted.

The most essential part of stanchion mapping is the stan-
chion state management as shown in Fig. 4. The stanchions
successfully detected in the first frame are set as Initial.
A newly detected stanchion will be set as Candidate if
there are not enough valid points. If the number of valid
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FIGURE 4. The stanchion state transition diagram. The start state of a new
stanchion can be Initial at the first frame, or Candidate after initialized. Different
arrow colors represent different conditions to change the stanchion state.

points is over a threshold, the stanchion will be consid-
ered as Accepted. The standard deviation of the centroid is
monitored to change the stanchion’s state from Accepted to
Fixed. If the centroid of the stanchion is stable enough in a
sliding window, its position will be fixed, thus the mapping
process will become more robust to noisy stanchion points
caused by the shadow effect. If the stanchion is invisible to
the robot and its state is Candidate, it will be considered as
an outlier and marked as Removed.

VI. EXPERIMENTS
A. DATA COLLECTION & EVALUATION METRICS
The dataset used for the evaluation of our framework was
collected on a Metro-Cammell train (M-train) of Hong Kong
Mass Transit Railway (MTR), which is the oldest and most
widely used trains in Hong Kong. Two sequences of laser
scan data were recorded with a SICK TiM561 LiDAR sensor
working at 15 Hz of scanning frequency. There are totally
four different types of cars in the data sequences. Each of the
cars is about 20 meters long. The summarized information of
the dataset is shown in Table 2.

TABLE 2. Statistics of Testing Data

Sequence
Num.

Car
Num.

Stanchion
Num.

Length
(m)

Duration
(s)

Laser
Scans

2 4 63 90.48 538 8098

The evaluation metrics for proposed semantic mapping
system are mainly based on the the measurements of the
metro car structure, such as the distances between stanchions
and the length of cars.

B. DATA ASSOCIATION & REFINEMENT
We first evaluate the performance of the data association and
refinement. Since the data association is directly determined
by the pose estimation result in local reference frame (i.e., the
frame in which the reference lines are defined), we can plot
the local localization results along the robot’s movement. As
the main advantage of point cloud segmentation is to assign
different weights for the points with different labels, we have
specially compared the localization results without or with
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(b) With different weights for stanchion points

FIGURE 5. The estimated robot poses w.r.t the reference frame in the
refinement. The gray regions show the failures of data association due to
insufficient point-to-line correspondences. The appropriate addition of
stanchion points significantly improves the successful rate of refinement.

stanchion points with different weights in the optimization
for refinement, as shown in Fig. 5.

To determine the success of data association, only those
refined laser points that fall within 5cm of the reference lines
are considered valid. The minimum number of valid points
for a successful refinement is 50. In Fig. 5, the short-cuts
in gray region mean the failure of refinement, which can
demonstrate the robustness of different configurations of the
data association and refinement process.

Obviously, the addition of stanchion points in the opti-
mization can effectively improve the robustness of the data
association process. As shown in Fig. 5(b), a larger weight
(w = 3) can result in better and more stable performance
than a smaller weight (w = 1). This is mainly because that
the stanchions are good landmarks in the metro which evenly
distribute and maintain a proper distance with each other in
the metro cars.

However, from the figure we can also find that the weight
for stanchion points should not be set too large (w = 5),
otherwise it will decrease the stability of the pose estima-
tion. The cause of this situation may be the possible noisy
measurements of the stanchions, since they are too thin to
be accurately measured by the LiDAR sensor. Moreover,
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Reflected by the ground

FIGURE 6. The situation of localization failure in the reference frame when
only stanchion points are used in the fine pose estimator. The uneven ground
of the car joint will cause the invalid measurements of laser scanner.

the situation shown in Fig. 6 can also cause the failure of
localization, which can be identified in the data association
process.

C. SEMANTIC MAPPING
To compare the performance of different popular LiDAR
mapping frameworks in our scene and their influences on our
semantic mapping results, we first evaluate the conventional
occupancy grid maps generated by different frameworks.
Then the semantic maps generated by our proposed frame-
work with different LiDAR odometry modules are compared.

1) Evaluation of the occupancy grid maps
To evaluate the quality of the occupancy grid maps con-
structed in the our testing scenarios, the GMapping1, Hector
Mapping2 and Cartographer3 are adopted for comparisons.
Since the GMapping additionally needs the odometry of the
robot as input, the laser_scan_matcher4 ROS package was
used for it.

In Fig. 7, the mapping results are listed for qualitative
comparison. It should be noted that we have chosen the
map of Cartographer as the reference, and the other two
maps are manually aligned to it with the first stanchion in
the map. Vertical reference lines in the figure are added for
better comparison. As shown by the red arrows, the map of
Hector Mapping has the largest difference, while the map of
GMapping remains an almost stable bias. These errors are
mainly caused by inaccurate scan matching, for example, the
situation in Fig. 6. The map of Cartographer achieves the
best performance and no obvious drift or error occurs.

2) Evaluation of the semantic maps
To quantitatively evaluate our semantic maps as Fig. 8, we
focus on the positions of stanchions in the map, since the dis-
tance between two adjacent stanchions can be conveniently
and accurately measured.

The distances between adjacent stanchions estimated with
different LiDAR odometry modules are demonstrated in

1http://wiki.ros.org/gmapping
2http://wiki.ros.org/hector_mapping
3https://google-cartographer-ros.readthedocs.io/en/latest/
4http://wiki.ros.org/laser_scan_matcher

Fig. 9. There are three clusters corresponding to 1.00m,
1.75m and ∼2.25m respectively. The third cluster is related
to the stanchion in the joint of cars, so the distances may be
slightly different. As shown in the figure, the distances esti-
mated by Cartographer have achieved the best performance
compared with the other two methods. It should be noticed
that the first two points in the second cluster are related to the
first and last stanchion in the data sequence, therefore, their
positions are not as accurate as the other stanchions due to
lack of measurements.

TABLE 3. The RMSE of estimated distances of adjacent stanchions and the
length of metro car with different LiDAR odometry modules in our framework

LiDAR odometry
RMSE of distance

between adjacent stanchions (m)
RMSE of

car length (m)

d = 1.00m d = 1.75m L = 18.0m

GMapping 0.071 0.075 0.179

Hector Mapping 0.031 0.068 0.099

Cartographer 0.018 0.043 0.064

Table 3 lists the root mean square error (RMSE) of the
estimated distances between adjacent stanchions as well as
the length of the metro car (which is defined as the distance
between the first and the last stanchion in a car). The results
consistently demonstrate that Cartographer outperforms the
other two frameworks in our scene.

D. RUNTIME ANALYSIS
The runtimes for the main components in our framework
are shown in Fig. 10, which were tested on a laptop with
an Intel Core i7-8750H CPU @ 2.20 GHz. The average
runtimes of the data association and refinement are 0.493ms
and 1.102ms, which makes the average rate of the point
cloud segmentation subsystem over 600Hz. The stanchion
detection process is very efficient by leveraging the prior
knowledge of the structure, which only spends less than
0.3ms in average.

It should be noted that the runtime of updating the map
will burst when the local point cloud and reference lines are
refined, or when the local map is merged with the global map
before the robot enters into a new car.

E. CUSTOMIZABLE DISINFECTION TASK
To support the customizable disinfection task, the robot needs
to understand the structure of the metro car around it. With
the segmented point cloud in our map, the structure label
can be decided by accumulating the point cloud in a local
moving window around the robot. Fig. 11 shows the extracted
structure labels on the left and right side of the robot when it
is moving in a the metro car.

Based on the semantic level understanding of the scene,
the navigation waypoints, the disinfection distance and the
disinfection time can be determined according to different
structures of the metro car in the customizable disinfection
task, as shown in Fig. 12:
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FIGURE 7. Comparisons of the grid maps generated by different LiDAR odometry modules. The grid maps are aligned by the first common stanchion (at the left of
the figure). The green dotted vertical lines take our map as the reference to compare the differences between each map. The red arrows point out the obvious
differences of GMapping and Hector Mapping compared with Cartographer.
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FIGURE 8. The hierarchical semantic map generated with our framework. The legends are the same as those in Fig. 2.
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FIGURE 9. The distances between adjacent stanchions in the maps
estimated with different LiDAR odometry modules.

• The navigation waypoints can be set according to the
positions of stanchions in the map. For example, in
Fig. 12(a), the waypoints are placed between the seats
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FIGURE 10. The runtime of each component in our framework.

and the stanchions and aligned with the position of the
stanchions. Additional waypoints are also inserted into
the adjacent stanchions with a spacing of 1.75m. Other
possible options for setting the waypoints could choose
the seats as the reference.
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FIGURE 11. The structure labels identified by the robot when moving in the
metro car, given the semantic point cloud constructed by the mapping module.

• The effective disinfection distance for different struc-
tures such as the seats and stanchions can be config-
ured accordingly. Taking Fig. 12(b) as an example, to
ensure the effectiveness of disinfection, the robot must
enter a specific range of the object to be disinfected.
These ranges will affect the robot’s local path planning
together with the navigation waypoints.

• The disinfection time can be adjusted by setting the
maximum velocity of the robot in different region. As
shown in Fig. 12(c), when passing by the stanchions
or seats, the robot should slow down or even stop for
a while to enhance the disinfection results in these high-
risk regions. For other regions, the robot can move faster
to reduce the total time consumption of the disinfection
task.

VII. CONCLUSIONS
In this paper, we presented a semantic mapping framework
for customizable disinfection tasks which can be used in
structured scenarios. The structure information about the
scene is used in the point cloud segmentation as the prior
knowledges. A hierarchical semantic map, including the seg-
mented point cloud, structure reference lines and objects,
can be built to provide a semantic level understanding of the
scene for the robot. By leveraging such semantic information,
our framework can be effectively deployed to customizable
disinfection applications in the metro and efficiently run at
real-time. In the future work, we will try to deploy our
system to other similar scenarios, such as buses and trains,
and further explore the potential usage of visual sensors to
capture more semantic information from the 3D structure,
which can be an alternative to our LiDAR-based perception
system.
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